Loading the Elevenlabs Text to Speech AudioNative Player...

When you’re first diving into power-supply design, buck converters can feel a bit like magic boxes—take a higher voltage in, and out comes a perfectly regulated, lower voltage with impressive efficiency, minimal noise, and a tiny PCB footprint. Yet the true secret to a well designed converter isn’t just hidden in some arcane equation; it’s also the way you lay out copper on your board.

If this sounds interesting to you and you'd like to request a demo or learn more, please contact sales.
Contact Sales
USE Flux Project Requirements Template
GO TO FLUX
Try AI Auto-Layout now!
Check if you got early access
Learn more about AI Auto-Layout
Explore NextPCB Templates
Open Flux to see if you have access
Download the Full Guide
View Projects with Polygons
Open Flux and start teaching Copilot
DOWNLOAD THE PDF
Try GPT-5 in Flux now

Get help with initial brainstorming

Starting a new hardware project can be overwhelming, but the completely overhauled Copilot simplifies the process by guiding you through component selection, spec verification. Just describe your goals and Copilot engages in a focused conversation to refine your requirements like a seasoned hardware engineer.

Copy Prompt
Get help defining your project requirements, block diagram, and research components

Ask me a structured set of questions (about 5 one at a time) to help brainstorm and outline the most important parts of a project including the critical technical requirements, including power, components, performance, constraints, Use case etc  

Always provide multiple options where applicable, considering trade-offs in cost, efficiency, size, and performance. By the end of this process, I want:  

1. A block diagram illustrating the system architecture.  

2. A complete list of all components, including passives and active components.

Copy Prompt
Go from a block diagram to specific components in a BOM

Here's a block diagram of this design. Please recommend at least three ICs from the @library for each block, highlighting their electrical characteristics and the reasons for your recommendations.

Streamline Parts Research

Instead of wading through datasheets and Google searches, use Copilot to select appropriate parts for implementation, recommending main and alternative components that meet design requirements. Tip: You can use tool like @library to direct Copilot to search the part library, or @file to direct Copilot to use datasheet details in it’s responses.

Copy Prompt
Get a list of part recommendations based on your requirements

@library List out 5 switching regulators that I can use for my project with a maximum output current of 2A. Include key parameters such as input voltage range, output voltage range, switching frequency, efficiency, and package type.

Copy Prompt
Extract reference design information from a part’s datasheet

@file extract the following details from the datasheet of @U2  

1. Key features  

2. Functional Pin Description  

   - List each pin with its name, function, and relevant electrical characteristics.  

3. From the Typical Application Circuit:  

   - List all components present along with their values in a table format.  

   - Describe explicitly how each pin is connected.  

4. Any circuit-Specific Design Notes

Copy Prompt
Alternative parts recommendations

Identify alternative components for @U4 with similar functionality, pin configurations, and electrical characteristics. Include key differences and trade-offs.

Copy Prompt
Obtain part’s maximum ratings

@file extract the absolute maximum ratings of @U1 including voltage, current, and thermal limits. Present the data in a clear table format.

Copy Prompt
Component research

@file Explain @U1 in detail, including its purpose, key functions, and common applications. Describe how it operates within a circuit and any notable characteristics. Also, explain the family or series this component belongs to, highlighting its variations, key differences, and typical use cases compared to other models in the series.

Copy Prompt
Obtain component operating conditions

@file Extract the recommended operating conditions for @IC2. Retrieve key parameters such as supply voltage range, operating temperature range, input/output voltage levels, and other relevant conditions specified for optimal performance.

Copy Prompt
Compare different parts

Compare LMR33630ADDAR and MP2451DJ-LF-Z in terms of efficiency, output ripple, load regulation, and thermal performance. Highlight key differences in topology, switching frequency, and suitability for a [specific application, e.g., battery-powered wearable]. Provide a recommendation based on [input voltage range, output voltage, current requirements.

Copy Prompt
Consolidate the BoM

Analyze all the parts in the project context and generate a consolidated parts table that optimizes component selection. Specifically, apply the following consolidation rule:

- Identify passive components (resistors, capacitors, inductors) with the same values but different MPNs (Manufacturer Part Numbers).

- Propose a single standardized MPN for each unique value, prioritizing parts with better availability, and popular supplier.

Present the table clearly. The table must strictly list and analyze all passive components in the project context. It must not use vague terms such as “etc.” or truncate the list in any way. The table should have the following headers (Original Part Category (e.g., Resistor, Capacitor, Inductor), Original Values/Specs (e.g., 10kΩ, 1μF, 100mH), Original MPNs (List all variants found in the project), Proposed Consolidated MPN (Recommended single part), Reason for Consolidation (e.g., same specs, better tolerance, reduced part diversity)

Edit Projects with Copilot

Copilot isn’t just here to answer questions—it can take direct action in your project, helping you place components, modify properties, and refine your design faster than ever. Instead of manually searching for parts or tweaking values one by one, you can ask Copilot to handle specific tasks, like adding a resistor with a defined value or updating a component’s footprint.

When Copilot detects an action it can execute, you’ll see an action button appear—click it to apply the change instantly. If you don’t see a button, try rephrasing your request or breaking it into smaller steps. While Copilot can’t yet generate an entire schematic at once, it’s great at guiding you through the process, handling tedious tasks, and keeping your workflow smooth.

Copy Prompt
Add parts to the project

I want the 555 timer to operate at a frequency of 1.5 kHz.

@library add the following components to the project:

- NE555 Timer IC

- 2-Pin Terminal Block Connector (for power input)

- Resistors:

   - R1 = 10kΩ

   - R2 = 100Ω

   - R3 (Current-limiting resistor for output)

- Capacitors:

   - C1 = 100nF (0.1µF)

   - C2 = 0.1µF (Decoupling capacitor)

- Diode: 1N4148

- LED

- Ground connection

Copy Prompt
Add a part to the project

@library add the following components to this project; NE555 Timer IC, 2-Pin Terminal Block Connector (for power input) and two 0603 1k ohm resistors

Copy Prompt
Replace parts

Replace @U1 with an LM2596

Copy Prompt
Quick batch edits to properties

Replace all 100nF capacitors with 10nF

Performing Quick Calculations

When working on a design, precise calculations are key—but instead of crunching numbers manually, Copilot can help streamline the process. Whether you need to size a resistor, calculate power consumption, or verify signal integrity, you can use Copilot to gather equations and relevant data before running calculations.

Start by pulling in the necessary formulas and values using @file or @library, ensuring you have all the details upfront. Once you’ve gathered the required inputs, use the @calculator tool to perform the calculations accurately. Taking this structured approach will help you get the most reliable results from Copilot.

Copy Prompt
Size passives - Sizing passives happens in two steps. First obtain the equations specified in the datasheet. Then perform the calculation

@file obtain the equation for sizing the inductor for @U2, along with the required parameter values needed for the calculation.

Copy Prompt

@calculator calculate the inductor size for U2 needed for my project (Vin = 5V, Vout = 3.3V, Iout = 1A)

Copy Prompt
Using IPC standards calculate ... (e.g., trace width)

@calculator calculate the required PCB trace width for the 12V power rail according to the IPC-2221 standard. The trace should handle a current of 3A with a maximum allowable temperature rise of 10°C. Assume a copper thickness of 1oz and an ambient temperature of 25°C.

Copy Prompt
Calculate decoupling capacitance

@calculator calculate the required decoupling capacitance for @C2 and @C3 considering ±50mv noise/ripple range.

Initial Planning and Brainstorming

Focuses on early project development to establish a solid project foundation.

Thumbnail of the electronic project
Copy PromptSee it in Action
Generate high level block diagram

@copilot, use mermaid-formatted block diagrams to generate 2 well-detailed architecture design of this project for comparison. Make sure to use the technical and functional requirements information.

Thumbnail of the electronic project
Copy PromptSee it in Action
Write a product requirement document with AI

@copilot, I’m designing a custom voice-controlled speaker and I initially want it to have buttons, Bluetooth, Wi-Fi, and rechargeable battery. Help me brainstorm and develop a comprehensive product requirements document. Ask me one question at a time, waiting for my response before moving to the next question.

Thumbnail of the electronic project
Copy PromptSee it in Action
Architecture design review

@copilot, validate the the suggested architecture in the block diagram matches the product requirements set for this project. Point out any missing blocks that would be needed to satisfy the requirements.

Design Circuit Blocks

Brainstorm and optimize modular circuit blocks for faster hardware development.

Thumbnail of the electronic project
Copy PromptSee it in Action
Power tree design

@copilot, based on my requirements, help me figure out the best power architecture for this project. What should the power tree look like?

Select Components

Involves choosing appropriate parts for implementation, recommending main and alternative components that meet design requirements.

Thumbnail of the electronic project
Copy PromptSee it in Action
Main part recommendation

@copilot, here's the block diagram of this design. In a table format, recommend at least 3 IC for each block highlighting the electrical characteristics of the IC and why you recommended it.

Thumbnail of the electronic project
Copy PromptSee it in Action
Minimum set of components to implement the typical circuit

@copilot, list all components specified in the datasheet of U1 for building the typical application circuit. Present the information in a detailed table format with equations needed to size the components.

Thumbnail of the electronic project
Copy PromptSee it in Action
Alternative parts recommendation

@copilot, outline the electrical characteristics of U4 as detailed in the datasheet. Then, suggest at least four drop-in replacement parts, presented in a table format with the columns

  • Replacement Part Number
  • Manufacturer
  • Key Specifications
  • Pin Compatibility
  • Performance Comparison
  • Notes/Comments
Thumbnail of the electronic project
Copy PromptSee it in Action
General parts selection

@copilot, query all components in the schematic that do not have an assigned manufacturer part number (MPN). Compile these components into a table format with the following details: Designator, Component Function, Electrical Properties, and Recommended MPN (Provide a list of recommended part numbers based on the component's properties, focusing on the most popular and widely available parts).

Improve Supply Chain

Focuses on optimizing component selection and management, including consolidating similar passive components and addressing part obsolescence to streamline the bill of materials and reduce costs.

Thumbnail of the electronic project
Copy PromptSee it in Action
Passive component consolidation

@copilot, perform a BoM consolidation review to identify passive components (resistors, capacitors, and inductors) that have similar but different values (within ±50%) and the same package code. The goal is to simplify the BoM and reduce costs by replacing these components with a single value where possible, without affecting the circuit's functionality.

For each group of similar components, compare their electrical and mechanical characteristics, then identify a single value that can replace the others. Provide a detailed comparison table for each group, listing the designators, component values, package codes, and the proposed consolidated value, along with key specifications and any additional notes. Document the final proposed consolidated BoM in a table format.

Thumbnail of the electronic project
Copy PromptSee it in Action
Part obsolescence management

@copilot, identify all components in the schematic that are either obsolete or not recommended for new designs (NRND). Compile these components into a table with the following details: Designator, Description/Function, Obsolete/NRND Status, Recommended Alternative Parts (Suggest at least 2 alternative components and their MPN that are current, widely available, and suitable replacements, based on the original component's specifications).

Calculate Component Values

Involves precise calculations for sizing various components often using Python for accuracy and presenting results in detailed tables.

Thumbnail of the electronic project
Copy PromptSee it in Action
Size passive components of voltage regulator

@copilot, from the datasheet of U1 obtain equations used to

  • set the output voltage to 3.3V
  • size C8, R3 and R7 (Reference the typical application circuit)
  • Size inductor

Calculate these values using python and present the results in a clear and detailed table.

Thumbnail of the electronic project
Copy PromptSee it in Action
Size oscillators and load capacitors

@copilot, use Python to calculate the load capacitors for Y1 using the information from its datasheet.

Thumbnail of the electronic project
Copy PromptSee it in Action
Size limiting current resistors

@copilot, use the datasheets of LED D5 and D2 to obtain electrical characteristics needed to calculate the appropriate current-limiting resistor value. Then use python to calculate the value and present it in a well detailed table forma.

Research Components

Involves detailed examination of integrated components to ensure proper component selection and usage in the design.

Thumbnail of the electronic project
Copy PromptSee it in Action
List IC Pin names and functions

@copilot, from the datasheet of U2 List the pin names, functions, and additional attributes for the IC. Include the following details for each pin in a table format: Pin Name, Function, Pin Type (e.g., power, ground, signal), Pin Direction (e.g., input, output, bidirectional, passive), Default State (e.g., high, low, floating), Voltage Level (if applicable), Additional Notes (e.g., pull-up/pull-down resistor, special considerations).

Thumbnail of the electronic project
Copy PromptSee it in Action
Absolute maximum rating considerations

@copilot What are the absolute maximum ratings for U5? Identify any critical components that must be carefully selected to stay within these limits and present the results in a well detailed table format.

Data Visualization and Analysis

Utilizes Python to create visual representations of design data to assist in analysis and decision-making.

Thumbnail of the electronic project
Copy PromptSee it in Action
Visualize with charts

@copilot, use python to plot a bar graph showing the most expensive components in this design.

Design Reviews

Provides thorough checks of specific circuit elements to verify correct calculations and implementation in the schematic and layout.

Thumbnail of the electronic project
Copy PromptSee it in Action
Review decoupling capacitor presence

@copilot, list all ICs and the decoupling capacitors attached to each. Ensure to include all ICs present in the design, including digital ICs, power converters, LDOs, etc. For every IC, clearly state:

  • What power net the decoupling capacitors are attached to. What is the stated voltage of that net.
  • The voltage rating and value of the attached decoupling capacitors.
  • Signal with the expression “[WARNING]” if any of the following conditions are met: no decoupling capacitors are attached; the voltage of the power net is higher than the voltage rating of the capacitor; No voltage range was stated for the capacitor. Give a separate “[WARNING]” for each condition. Signal with the expression “[OK]” if none of those conditions are met
  • Express the result in a markdown-formatted table
Thumbnail of the electronic project
Copy PromptSee it in Action
Review my current limiting resistors

@copilot, review the design to ensure all current-limiting resistors for LEDs are correctly calculated for a current range of 1mA to 10mA. Follow these steps:

  1. Identify all LEDs and their resistors.
  2. Reference the datasheets for forward voltage (Vf) and current (If). Make no assumptions in this step
  3. Calculate the correct resistor values.
  4. Verify that schematic values match calculations.
  5. Document findings in a table with LED designator, Vf, If, calculated resistor value, schematic value, status, and notes.
Thumbnail of the electronic project
Copy PromptSee it in Action
Calculates and analyzes the efficiency of PMIC in varying load conditions

@copilot, determine the efficiency of U4 at various load conditions, considering that the input is a battery with a voltage range from 4.2V (fully charged) to 3.3V (low battery level). Identify which components in the circuit affect this efficiency and present that in a detailed table. Finally, use python to plot a graph showing the efficiency of U1 across the range of load conditions and input voltages.

Testing and Reliability Analysis

Generates test plans and collaborative workflows, ensuring your hardware is manufactured error-free.

Thumbnail of the electronic project
Copy PromptSee it in Action
Test Plan

@copilot, create a detailed step-by-step plan table for this project to verify its functionality.

Thumbnail of the electronic project
Copy PromptSee it in Action
FMEA Report

@copilot, develop an FMEA (Failure Mode and Effects Analysis) report in a table format that analyzes the systems schematic, each unique component specification, and operational parameters. It should identify critical failure modes, assess their impact, and recommend mitigation actions based on severity, occurrence probability, and detectability. Include columns such as: process step, potential failure mode, potential failure effect, S, O, D, RPN, Action Recommended, and any other you see fit.

Initial Brainstorming

Copilot can help get you started quickly by understanding the requirements and providing guidance.

Architecture diagram of an electronics project
Copy Prompt

@copilot here's a block diagram I've been working on. Can you suggest ICs I might use to implement this in Flux?

A esp32 and couple of relay module with a DC motor
Copy Prompt

@copilot I'd like to build a smart curtain that opens or closes based on the amount of sunshine I want to enter my room. How would you approach designing this? Please ask me questions to help with the development.

A prototype of an electronics project consisting of buzzer, a coin cell battery and looks like an 555 timer IC
Copy Prompt

@copilot I'm designing a PCB for a medical device that measures heart rate and temperature. Can you give me the list of components I will need?

Prototype of a smart watch with an old rare classic LED display
Copy Prompt

@copilot I'd like to build geeky wristwatch with LED display. How would you approach building this? Please ask me questions to help me design this.

Faster Design Iteration

Copilot can connect complex parts for you, explore design options, and provide a bill of materials for a target project.

A graph of battery charging phase
Copy Prompt

@copilot here's a plot of the charging profile of U2. What charging phase would it be in at 3.2V?

Copy Prompt

@copilot, how would I connect these parts to make the LED flash at 1kHz?

Copy Prompt

@copilot, how would I connect these two HDMI connectors as a pass through?

Copy Prompt

@copilot, how should I connect RP2040 and TFT LCD?

Copy Prompt

@copilot can you choose 4 digital pins on the ATMega328P-AU that I have here to use as GPIO given that I am already using some pins for reset, the external clock, UART, and I2C.

Combing Through Huge Datasheets

Copilot can understand datasheets and reference them in its responses. This means you get more accurate responses when asking Copilot questions about specific parts.

Copy Prompt

@copilot what's the max voltage I can supply to U2?

Copy Prompt

@copilot can U2 withstand intense operating temperatures even without a heatsink?

Copy Prompt

@copilot what is the maximum frequency I can reach without an external crystal on U6?

Copy Prompt

@copilot I'm a firmware engineer. How do I configure an interrupt on a pin for U4?

Copy Prompt

@copilot what are the clock requirements for U4?

Copilot as your Flux Tutor

Copilot answers questions about how to use Flux by referencing our documentation. So, instead of getting stuck and searching documentation, you can stay in the flow and get the help you need without leaving your project!

a soic-8 intergrated circuit pin out and its dimension
Copy Prompt

@copilot can you explain the different dimensions of this footprint diagram?

Copy Prompt

@copilot how do I know if a part has a simulation model?

Copy Prompt

@copilot how do I connect ground to these components?

Copy Prompt

@copilot I can't find part on the library what do I do?

Copy Prompt

@copilot how do I know my projects are safe and private?

Copy Prompt

@copilot what resistor do I need to limit the current on LED1 while being driven by U1?

Copy Prompt

@copilot can you help me debugging this circuit, and help me understand if there's any problems?

Copy Prompt

@copilot can you check all my components in my schematic and tell me if I am missing any manufacturer part number fields?

Copy Prompt

@copilot how would I decrease the distance between my ground fill and my vias?

Part Selection

Copilot can provide valuable recommendations to optimize your design based on constraints and specifications.

Architecture diagram of an electronics project
Copy Prompt

@copilot please review this block diagram and compare it to my project, is there anything I'm missing?

Copy Prompt

@copilot what components do I need to power a 30w speaker to this audio driver amplifier?

Copy Prompt

@copilot can you suggest a suitable ADC for microphone pickup going through an Arduino Uno?

Copy Prompt

@copilot can I use U1 to make a 20db gain op-amp?

Copy Prompt

@copilot I want to build a PCB that uses a solar panel to charge a single cell LiPo battery. I want to measure ambient pressure with a microcontroller and send that over WiFi. What are all the components I would need?

Find Alternate Parts

Copilot can offer tailored suggestions and analyze tradeoffs based on your project goals, constraints, and specifications.

Copy Prompt

@copilot can you suggest an alternative to C1 that meets the same specs but is more cost-effective?

Copy Prompt

@copilot are there any alternatives to U2 that have better availability?

✨ Pro Tip: Use @tools to give Copilot more direction

Flux Copilot has a range of tools to help you through your design process. For the best results, use one tool at a time. This helps Copilot focus on a single task, making its responses more accurate and actionable.

  • Use @library to direct Copilot to search Flux’s library of components. This is useful when you want to insert components that are in the parts library.
  • Use @file when you want to direct Copilot to access datasheets, PDFs, or other documents that are attached to your project or components when conducting detailed analysis. You can also attach files to the prompt itself.
  • Use @calculator when you want Copilot to calculate a value with deterministic instead of relying solely on AI reasoning.
  • Use @code to create Python code snippets to create graphs, simulate, or validate design ideas.
  • Use @help to get guidance on using Flux features and best practices.

Flux Copilot is here to make hardware design more straightforward and efficient. By following these prompts and tips, you can streamline your workflow, reduce errors, and tackle each step of your project with confidence. Feel free to share your results and favorite prompts in our Slack Community.

Happy designing!

Copy the Prompt and Try it Now
Design a low-noise microphone preamplifier for an electret condenser mic feeding a 24-bit ADC. You must calculate the bias network, gain-setting resistors, coupling capacitors, input high-pass cutoff, output anti-aliasing RC, and decoupling layout. Follow the op-amp and microphone capsule datasheets, ADC input requirements, and industry best practices. It will be integrated into a design. Supply: 3.3V analog rail. Mic bias: 2.0 V through resistor, current ~0.5 mA. Target gain: 20 dB to 40 dB switchable. Bandwidth: 20 Hz to 20 kHz. Input noise target: as low as practical. Include pop-suppression considerations and star-grounding strategy.
No items found.
No items found.
No items found.

What Is a Buck Converter… Really?

At its heart, a buck converter is nothing more than three core elements working together to regulate a higher voltage to a lower voltage—and understanding these will make everything else click.

TPS62040, a Typical Buck Converter Design
  1. The Fast Switch (MOSFET)
    This semiconductor turns your input voltage on and off hundreds of thousands—or even millions—of times per second. By varying the duty cycle (the fraction of time “on” versus “off”), it controls the average energy delivered downstream.
  2. The Inductor (“Energy Storage”)
    During each “on” phase, the inductor stores energy in its magnetic field; when you switch off, that energy discharges into the load. This pulsed exchange smooths out the current and sets the stage for a steady voltage.
  3. The Capacitors (“Voltage Buffers”)
    Placed at the output (and often at the input), these absorb the inductor’s ripple and deliver bursts of current when your load suddenly demands it. Together, the inductor and capacitors form an LC filter that turns square pulses into a level, and ideally stable, DC voltage rail.

Here’s the simple math for a 12 V→5 V converter:

That 42 % duty cycle tells the MOSFET exactly how long to stay on each cycle so the LC filter averages out to 5 V.

Behind the scenes, a control IC monitors the output, compares it to an internal reference, and tweaks that duty cycle in real time to handle changing loads or input swings. But regardless of controller complexity, the switch + inductor + filter always remain the converter’s heart and soul.

Component Selection: Why It Matters (and How to Get It Right)

Pick the wrong inductor, and you may face problems like overheating, excessive output ripple, or even core saturation that starves your load under sudden demand. To help you choose wisely, here’s what every beginner EE should know about inductor characteristics:

  • Current Rating and Saturation (Isat)
    Every inductor has a maximum current above which its magnetic core saturates and loses inductance, causing large current surges. Aim for an Isat at least 1.2×–1.5× your peak load to ensure reliable performance under transient conditions.
  • DC Resistance (DCR)
    DCR is the winding’s inherent copper resistance. Lower DCR reduces conduction losses and heat buildup—boosting efficiency—but often comes in a larger or costlier package. Balance your efficiency goals with board space and budget constraints by selecting the lowest practical DCR.
  • Core Material
    The core defines how the inductor behaves across frequencies and currents:
    • Ferrite cores are the workhorses of switching converters, offering high permeability and low losses at high frequency. They deliver crisp switching edges and minimal ripple—ideal for most buck designs.
    • Powdered-Iron cores incorporate distributed gaps, giving a gentler saturation knee and better performance under high DC bias. Use them when your peak currents vary widely or when you need softer saturation behavior.
    • Shielded vs. Unshielded: Shielded inductors confine magnetic fields within their package, reducing EMI coupling to adjacent traces. Unshielded inductors can be more compact but may require extra clearance from sensitive circuits.
  • Package & Thermal Performance
    Inductor packages differ in footprint, height, and thermal dissipation. Compact surface-mount inductors save board space but may run hotter; larger through-hole or tall-stack types handle more power but occupy more real estate. Evaluate your thermal budget and mechanical constraints when selecting package size.
Pro tip: Choosing an inductor with a bit of extra saturation current rating and modestly lower DCR gives you valuable headroom during prototyping—preventing unexpected heat and ripple issues as your load conditions change.

Capacitor Mix

A combination of MLCCs and a bulk cap covers ripple from kHz to MHz—get this wrong, and you’ll hear audible squeals or see output spikes.

Capacitor Selection

| Type | Role | Placement | Pro Tip | | :--- | :--- | :--- | :--- | | MLCC | Kill high-frequency ripple | Within 1–2 mm of switch and inductor | Derate by ≥2×—X5R/X7R parts deliver only 40–60 % of marked capacitance under bias | | Bulk | Reservoir for mid/low-freq. | Beside the output inductor | Watch ripple-current rating; its ESR provides a natural damping zero |
Deep dive: MLCCs lose capacitance under DC bias and heat. And yes, they can sing! Ensure parallel MLCCs are carefully secured mechanically to mute piezo effects. Placing smaller-value capacitors first help to attenuate the high frequency singing in the larger smoothing caps.

Layout 101: Your Single Biggest Win

TPS56339 Reference Design

Having chosen your parts, layout is your next battleground. The difference between a noisy, inefficient converter and a clean, reliable one often comes down to copper placement. Follow these steps to keep that switching loop tight and your ground plane unbroken.

Remember: “Keep the switching loop tiny and the ground plane continuous.”

Minimize the Switch Loop

  • Sketch the loop: Input cap → High-side MOSFET → Inductor → Output cap → Return to input cap.
  • Goal: Loop area < 10 mm². Every extra mm² adds parasitic inductance, causing ringing, EMI, and wasted switching energy.
  • Tip: One customer saw a 20 dB EMI drop simply by shrinking their loop from 15 mm² to 8 mm²!

Solid Ground Plane

  • Never split your ground under the SW node. Return currents hug the shortest path—any gap forces detours that radiate like tiny antennas.

Via Stitching

  • Use at least six short vias per cap or ground polygon. More vias lower impedance, spread heat, and tame high-frequency noise.

Separate Control Signals

  • Route gate-drive and feedback traces outside high-current loops. If intersections are unavoidable, shield with a small ground pour.

Different Buck Converter Topologies

From full DIY assemblies to one-click, ready-to-use modules, these different topologies trade off flexibility, board space, and time-to-market. Pick the one that fits your project rhythm.

| Topology | What You're Really Building | When to Use it | | :--- | :--- | :--- | | Discrete | Hand-select controller, gate driver, MOSFETs, inductor. Like building a bike wheel by wheel | Total flexibility, custom performance, or lowest part cost | | [DrMOS](https://www.flux.ai/flux/tps62130argtr-regulator?editor=pcb_2d) | Integrated MOSFET + driver in one package—just add inductor and caps. Like buying a pre-built engine. | Mid-power designs, tight PCB area | | [Power Module](https://www.flux.ai/flux/buck-boost-3p3v-500ma-physical-module) | Complete power stage: driver, MOSFETs, inductor, capacitors, telemetry—even PMBus. Ready-to-ride e-bike | Fastest path to market, highest integration |
Each template already includes polygon pours for power and ground, and via-stitching. Once cloned, customize only what matters.

Tips To Design Your Best in Flux

▶️ Polygons & Zones:

Ground planes are a default in any Flux project, which reflows around all parts and pads to help with noise isolation. Polygons are now in Flux helping you leverage wide current paths for your output voltage to flow through. Adjust thermal reliefs, keep-outs, and copper weights without redrawing anything.

🤖 Copilot: Your AI EE Mentor:

Stuck on compensation loops or gate-resistor values? Ask Copilot right inside the editor. It explains theory, suggests values, and even pulls tables from datasheet PDFs.

🛣️ Auto-Layout for Non-Critical Nets:

Zone off low-speed signals—UART, I²C, sensors—and let Auto-Layout handle them. That frees you to hand-route the critical buck loops that define performance.

“Copilot help me determine the best orientation of U1 to minimize the switching current loop.”

Quick-Reference Cheat Sheet

Think of this as your design checklist: tape it to your monitor, keep it next to your keyboard, or fold it in your notebook. Pull it up whenever you need a formula, a layout reminder, or a topology refresher.

Key Formulas & Practices

| Topic | Formula / Practice | Why it Matters | | :--- | :--- | :--- | | Duty Cycle (D) | D = VOUT / VIN | Sets the average output voltage | | Inductor Ripple | ΔIL = (VIN–VOUT) · D / (fSW · L) | Balances ripple vs. transient response | | Efficiency (η) | η = (VOUT · IOUT) / (VIN · IIN) · 100 % | Quantifies total losses | | Switching Loss (Psw) | Psw = (Eon + Eoff) · fSW | Guides MOSFET choice and frequency | | SW Loop Area | less than 10 mm²| Minimizes parasitic inductance and EMI | | Via Stitching | ≥ 6 vias per capacitor | Lowers impedance and spreads heat | | Grounding | Continuous plane under SW node | Prevents unintended current loops |

Topologies & Control Methods

| Aspect | Options / Methods | When to Use | | :--- | :--- | :--- | | Topologies | Discrete / DrMOS / Power Module | Flexibility vs. integration vs. speed to market | | Control | Voltage-mode, Peak-Current, COT | Trade loop speed, stability, and complexity | | Gate-Drive Tuning | Rgate: 2–5 Ω; Dead-time: 20–50 ns | Optimize EMI control vs. switching speed | | Capacitor Mix | MLCC + Bulk (Ta/Poly) | Flat impedance across the frequency spectrum |

Ready to Build Your First Buck in Minutes?

  1. Pick your topology above and click Clone in Flux.
  2. Drag & drop your caps and inductor from the parts panel.
  3. Invoke Copilot for any component or layout question.
  4. Enable Auto-Layout for all non-critical nets.
  5. Hand-tune your switch loops—and watch your efficiency and EMI metrics soar.

With Flux’s polygons, AI Copilot, and Auto-Layout, you’ll spend less time wrestling nets and more time optimizing your power stage—so you can ship faster and with confidence.

👉 Get started now » Open Flux and Clone a Buck Converter

Profile avatar of the blog author

Ryan Fitzgerald

Ryan is an electronics and electrical systems engineer with a focus on bridging the gap between deep learning intelligent algorithms and innovative hardware design. Find him on Flux @ryanf

Go 10x faster from idea to PCB
Flux is an all-in-one EDA. Use re-usable blocks, scripting, and a library you don’t have to manage to dramatically reduce the time it takes to go from idea to prototype.
Illustration of sub-layout. Several groups of parts and traces hover above a layout.
Illustration of sub-layout. Several groups of parts and traces hover above a layout.
Build PCBs with an AI Teammate
An AI-powered eCAD platform featuring Flux Copilot—an AI teammate that reviews schematics, reads datasheets, and can even route your board.
Screenshot of the Flux app showing a PCB in 3D mode with collaborative cursors, a comment thread pinned on the canvas, and live pricing and availability for a part on the board.
Build PCBs with an AI Teammate
An AI-powered eCAD platform featuring Flux Copilot—an AI teammate that reviews schematics, reads datasheets, and can even route your board.
Screenshot of the Flux app showing a PCB in 3D mode with collaborative cursors, a comment thread pinned on the canvas, and live pricing and availability for a part on the board.
Build PCBs with an AI Teammate
An AI-powered eCAD platform featuring Flux Copilot—an AI teammate that reviews schematics, reads datasheets, and can even route your board.
Screenshot of the Flux app showing a PCB in 3D mode with collaborative cursors, a comment thread pinned on the canvas, and live pricing and availability for a part on the board.
Flux for Enterprise
Learn how Fortune 500s are revolutionizing hardware design at scale with AI.
Flux for Enterprise
Join leading Fortune 500s and over 300k hardware engineers revolutionizing the way they build PCBs with AI
Flux for Enterprise
Join leading Fortune 500s and over 300k hardware engineers revolutionizing the way they build PCBs with AI